끄적끄적오랜만에 논문 기록을 한다. 8월 중순 이후로 좀 하던 연구도 따라 잡히고 그래서 꺾였다가 다시금 하고 싶은 내용 하나 잡아서 시작. 내 맘대로 Introduction2022년 공개된 논문이라 꽤 됐긴 한데, 이미지로부터 바로 파라미터를 예측하는 것이 아니라 최적화랑 estimation을 교묘하게 묶어놓은 방식. PyMAF랑 비슷한 느낌인데 이게 원조다. 현재 모델 vertex를 이미지로 내려찍고, 해당 위치의 이미지 feature로 vertex displacement를 추정하는걸 반복하는 방식. vertex가 이동해야할 방향을 네트워크를 활용해서 계속 추정하고, 이걸 이용해서 최적화하는 걸 반복해서 최종 형상을 얻어내는 방식이다. L2 distance나 chamfer distance 같은건 ..