Paper 248

[Human] I M Avatar: Implicit Morphable Head Avatars from Videos

I M Avatar: Implicit Morphable Head Avatars from Videos 내 맘대로 Introduction PiFU + deformation field 컨셉으로 dynamic object recontruction하는 논문의 얼굴 버전이다. 전신과 대비해서 움직임의 폭이 적고 다양성도 적은 편이어서 난이도가 조금 더 낮은 편이라 성능은 더 뛰어나 보인다. deformation field는 3DMM이라는 얼굴 모델의 basis를 적극 활용했고 ray marching을 통해 surface point를 찾아내는 것은 똑같다. ray marching 과정에서 gradient가 끊기는 것을 연결하기 위해 사용한 수식은 SelfRecon과 사실상 동일하다는 점이 눈에 띄는데 SelfReco..

Paper/Human 2023.03.10

[Human] PaMIR: Parametric Model-Conditioned ImplicitRepresentation for Image-based Human Reconstruction

* 이전 기록 방식이 난잡하기도 하고 길이가 길어 이 글부터는 분량을 좀 줄이고 핵심 아이디어라고 생각되는 부분 외에는 생략하기로 했다. PaMIR: Parametric Model-Conditioned Implicit Representation for Image-based Human Reconstruction 내 맘대로 Introduction PaMIR는 간단히 말해 PiFU 에 3D volume aligned feature를 추가한 것이다. pixel aligned feature 만 쓰는 PiFU에, 이미지에 미리 SMPL 모델을 피팅해두고 피팅된 모델을 둘러싼 공간을 3D convolution으로 feature화 해서 같이 쓰는 식이다. PiFu가 위와 같은 식으로 정리할 수 있다면, PaMIR는 아..

Paper/Human 2023.03.09

[Human] SelfRecon: Self Reconstruction Your Digital Avatar from Monocular

SelfRecon: Self Reconstruction Your Digital Avatar from Monocular Video 내 맘대로 Introduction 이 논문은 SMPL + NeRF 컨셉을 이용해서 3D Human reconstruction을 목표로 하는 논문이다. NeRF 컨셉을 녹인 것이기 때문에 결과물로 나오는 3D Human mesh는 SMPL류도 아니고 rigging이 가능한 형태도 아닌 그냥 mesh 덩어리다. 그냥 입력 데이터에 딱 맞는 덩어리가 나오는 논문이다. contribution 자체가 explicit method (SMPL 기반) 과 implicit method (SDF + NeRF) 를 합친 것에 있다. 사실 상 SMPL에 옷을 커버하는 +@를 더하는 컨셉을 유지하고 ..

Paper/Human 2023.03.08

[NeRF] Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance (a.k.a IDR)

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance 내 맘대로 Introduction 2023.02.21 - [Reading/Paper] - [NeRF] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 이전 글에서 Inference tips에서 언급한 바와 같이 NeRF MLP에서 output으로 얻을 수 있는 volume density를 이용하면 3D geometry를 얻을 수 있다. density volume을 만들고 marching cube 알고리즘을 적용하는 방식이었다. 이 논문은 그 특징에서 착안한 듯하다. 어떻게 하면 3D ..

Paper/3D vision 2023.02.23

[NeRF] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 내 맘대로 Introduction NeRF는 나온지 2년 밖에 되지 않았지만 이제 비전 공부했다는 사람 중에 모르는 사람없을 정도로 유명해졌다. 오히려 모르면 안된다는 소리가 나올 정도로 엄청난 논문이고 개인적으로 GAN이 처음 등장했을 때보다 훨씬 큰 충격을 가한 논문이라고 생각한다. 내가 말하는 NeRF는 간단히 말하면 "어떤 대상의 여러 2D 이미지만 갖고 그 대상의 무한한 2D 이미지를 얻는 기술"이다. 정확히는 어떤 대상을 특정 각도로 촬영한 이미지로 네트워크를 하나 학습 시켜서 임의의 각도에서 촬영한 이미지를 생성해내는 기술이다. NeRF가 대단한 이유는 기존에 이러한..

[Diffusion] High-Resolution Image Synthesis with Latent Diffusion Models (a.k.a Stable Diffusion)

High-Resolution Image Synthesis with Latent Diffusion Models 내 맘대로 Introduction diffusion 논문의 인기를 극단적으로 끌어올리는데 기여한 또 다른 기념비적 논문 중 하나다. diffusion model이 갖고 있는 문제를 해결하는 것은 contribution으로 주장하는 논문이다. diffusion model은 이미 기존 generative model의 단점을 상당수 개선했지만 여전히 문제점은 갖고 있다고 한다. 엄청나게 오래 걸리는 학습 시간 긴 inference 시간 2023.02.17 - [Reading/Paper] - [Diffusion] Denoising Diffusion Probabilistic Models 의 result 부..

Paper/Generation 2023.02.17

[Diffusion] Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models 내 맘대로 Introduction 이 논문은 요새 뜨거운 감자인 diffusion model을 처음으로 알렸다고 해도 과언이 아닐 정도로 기념비적인 논문이다. 이전에 2015년 diffusion model 개념을 처음 소개한 논문은 따로 있지만 실제 GAN에 대적하는 성능을 보인다고 주장하여 그 우수성을 입증한 것은 이 논문이기 때문에 더 유명하다. GAN처럼 likely-hood method를 사용하는 generative model의 일종이지만 기존에 GAN이 갖고 있는 mode collapse, 학습 불안정성, 다양성 부족과 같은 문제를 풀 수 있는 새로운 프레임워크인 diffusion model을 상세히 소개한다. 이 글은 d..

Paper/Generation 2023.02.17

[Depth] HITNet: Hierarchical Iterative Tile Refinement Network for Real-time StereoMatching

HITNet: Hierarchical Iterative Tile Refinement Network for Real-time Stereo Matching 내 맘대로 Introduction 이 논문은 CVPR 2019년에 발표된 논문인데 일단 구글에서 쓴 논문이어서 신뢰도가 그냥 높다. Stereo depth estimation에 관한 논문이고 passive stereo를 딥러닝 써서 잘 해보자는 논문이다. 정확히는 stereo matching을 다룬다. passive stereo는 일반적으로 cost volume을 쌓는 형태가 많은데 이 때 감당해야 할 메모리 사용량과 느린 속도 문제를 해결하는 것에 주 목표를 둔 것 같다. 간단히 contribution을 정리하면 다음과 같다. A fast multi-r..

Paper/3D vision 2023.02.06