내 맘대로 Introduction 논문에 face가 들어가서 face recognition이 본체인 것 같지만 사실 additive angular margin loss가 본체다. triplet loss와 같이 positive 대상과는 가깝게, negative 대상과는 멀게 embedding해야 하는 상황에서 쓸 수 있는 loss다. 조금 오래 된 논문이기도 한데 뒤늦게 읽었다. 엄청 유명한 방식. log-softmax와 비슷한데, 단순히 값을 input으로 넣는 것이 아니라, learnable embedding N개를 만들어두고, 가까운 embedding과의 "각도"의 cosine 값을 사용한다. 직관적으로 보면 feature 간의 각도를 벌리도록 설계하는 것. 여기다 마진을 조금 더 더해주면 분별력이 ..